کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4669461 | 1346154 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Ricci flow of left-invariant metrics on full flag manifold SU(3)/T from a dynamical systems point of view
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we study the behavior of the Ricci flow at infinity for the full flag manifold SU(3)/T using techniques of the qualitative theory of differential equations, in special the Poincaré compactification and Lyapunov exponents. We prove that there are four invariant lines for the Ricci flow equation, each one associated with a singularity corresponding to an Einstein metric. In such manifold, the bi-invariant normal metric is Einstein. Moreover, around each invariant line there is a cylinder of initial conditions such that the limit metric under the Ricci flow is the corresponding Einstein metric; in particular we obtain the convergence of left-invariant metrics to a bi-invariant metric under the Ricci flow.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 133, Issue 5, July 2009, Pages 463-469
Journal: Bulletin des Sciences Mathématiques - Volume 133, Issue 5, July 2009, Pages 463-469