کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4669499 | 1346163 | 2008 | 6 صفحه PDF | دانلود رایگان |

Let C be an irreducible smooth projective curve defined over an algebraically closed field k. Let G be a semisimple linear algebraic group defined over the field k and P⊂GP⊂G a proper parabolic subgroup. Fix a strictly anti-dominant character χ of P . Let EGEG be a semistable principal G-bundle over C. If the characteristic of k is positive, then EGEG is assumed to be strongly semistable. Take any real number ϵ>0ϵ>0. Then there is an irreducible smooth projective curve C˜ defined over k, a nonconstant morphismϕ:C˜→C, and a reduction of structure group EˆP⊂ϕ∗EG of the principal G -bundle ϕ∗EGϕ∗EG to the subgroup P, such that the following holds:degree(EˆP(χ))degree(ϕ)<ϵ, where EˆP(χ) is the line bundle over C˜ associated to the principal P -bundle EˆP for the character χ of P.
Journal: Bulletin des Sciences Mathématiques - Volume 132, Issue 1, January–February 2008, Pages 1–6