کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4669975 | 1633936 | 2013 | 5 صفحه PDF | دانلود رایگان |
We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.
RésuméNous présentons une approximation de Petrov–Galerkin pour un problème de point selle incorporant un « modèle » (équation aux dérivées partielles) et des « données » (M observations expérimentales) afin dʼobtenir une estimation conjointe de la variable dʼétat et du biais de modèle. Notre théorie a priori identifie deux contributions à la décroissance de lʼerreur sur lʼétat en fonction du nombre dʼobservations expérimentales, M : la croissance de la constante stabilité avec M ; la décroissance de lʼestimation par moindre carré du biais de modèle avec M. Nous présentons des résultats pour un problème de Helmholtz synthétique ainsi que pour un système acoustique réel.
Journal: Comptes Rendus Mathematique - Volume 351, Issues 23–24, December 2013, Pages 937–941