کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4670210 1633939 2013 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explicit 2D ∞-harmonic maps whose interfaces have junctions and corners
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Explicit 2D ∞-harmonic maps whose interfaces have junctions and corners
چکیده انگلیسی

Given a map u:Ω⊆Rn→RNu:Ω⊆Rn→RN, the ∞-Laplacian is the system:equation(1)Δ∞u:=(Du⊗Du+|Du|2[Du]⊥⊗I):D2u=0Δ∞u:=(Du⊗Du+|Du|2[Du]⊥⊗I):D2u=0 and arises as the “Euler–Lagrange PDE” of the supremal functional E∞(u,Ω)=‖Du‖L∞(Ω)E∞(u,Ω)=‖Du‖L∞(Ω). (1) is the model PDE of the vector-valued Calculus of Variations in L∞L∞ and first appeared in the authorʼs recent work [10], [11], [12], [13] and [14]. Solutions to (1) present a natural phase separation with qualitatively different behaviour on each phase. Moreover, on the interfaces the coefficients of (1) are discontinuous. Herein we construct new explicit smooth solutions for n=N=2n=N=2, for which the interfaces have triple junctions and non-smooth corners. The high complexity of these solutions provides further understanding of the PDE (1) and limits what might be true in future regularity considerations of the interfaces.

RésuméOn se donne une carte u:Ω⊆Rn→RNu:Ω⊆Rn→RN, le laplacien-∞ est le système :equation(1)Δ∞u:=(Du⊗Du+|Du|2[Du]⊥⊗I):D2u=0,Δ∞u:=(Du⊗Du+|Du|2[Du]⊥⊗I):D2u=0, qui se présente comme une EDP dʼEuler–Lagrange de la fonctionnelle E∞(u,Ω)=‖Du‖L∞(Ω)E∞(u,Ω)=‖Du‖L∞(Ω) ; (1) est lʼEDP modèle du calcul des variations à valeurs vectorielles dans L∞L∞, introduite pour la première fois dans les travaux de lʼauteur [10], [11], [12], [13] and [14]. Les solutions de (1) mettent en évidence une séparation naturelle, avec des comportements qualitativement différents pour chaque phase. De plus, sur les interfaces, les coefficients de (1) sont discontinus. On construit ici des solutions régulières explicites dans le cas n=N=2n=N=2, solutions pour lesquelles des jonctions ont des points triples et des coins non réguliers. Lʼextrême complexité de ces solutions permet de mieux comprendre lʼEDP (1) et ses limites, qui pourraient être vraies pour dʼautres cas envisageables de régularité des interfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Mathematique - Volume 351, Issues 17–18, September 2013, Pages 677–680
نویسندگان
,