کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4671005 | 1633982 | 2010 | 5 صفحه PDF | دانلود رایگان |

RésuméÉtant donné un complexe cellulaire constitué de polytopes, plongé dans un espace Euclidien, nous construisons des espaces d'éléments finis de formes différentielles, conformes par rapport à la dérivée extérieure, contenant celles qui sont polynomiales de degré maximal donné, ayant localement la propriété de suite exacte et d'extension, de telle sorte que parmi tous les espaces ayant ces propriétés, ils ont la plus petite dimension. Plus généralement nous construisons, pour tout système d'éléments finis inclus dans un système d'éléments finis compatible, un système d'éléments finis compatible intermédiaire et de dimension minimale.
Given a cellular complex consisting of polytopes, embedded in a Euclidean space, we construct finite element spaces of differential forms, conforming with respect to the exterior derivative, containing those that are polynomial of given maximal degree, having locally the property of exact sequence and extension, so that among all spaces having these properties they have the smallest dimension. More generally we construct, for any finite element system included in a compatible finite element system, an intermediate compatible finite element system of minimal dimension.
Journal: Comptes Rendus Mathematique - Volume 348, Issues 3–4, February 2010, Pages 217-221