کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4671249 | 1633955 | 2012 | 5 صفحه PDF | دانلود رایگان |

This Note deals with a uniqueness and stability result for a nonlinear reaction–diffusion equation with heterogeneous coefficients, which arises as a model of population dynamics in heterogeneous environments. We obtain a Lipschitz stability inequality which implies that two non-constant coefficients of the equation, which can be respectively interpreted as intrinsic growth rate and intraspecific competition coefficients, are uniquely determined by the knowledge of the solution on the whole domain at two times t0 and t1 and on a subdomain during a time interval which contains t0 and t1. This inequality can be used to reconstruct the coefficients of the equation using only partial measurements of its solution.
RésuméDans cette Note, nous présentons un résultat dʼunicité et de stabilité pour une équation de réaction–diffusion non linéaire et à coefficients hétérogènes, intervenant notamment dans des modèles de dynamique des populations. Nous établissons une inégalité du type Lipschitz impliquant que la connaissance de la solution de lʼéquation sur tout le domaine dʼétude à des temps t0 et t1, ainsi que sa connaissance sur un sous-domaine durant un intervalle de temps contenant t0 et t1, détermine de façon unique deux coefficients hétérogènes de lʼéquation.
Journal: Comptes Rendus Mathematique - Volume 350, Issues 9–10, May 2012, Pages 469-473