کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4671372 1633999 2008 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Un analogue conforme des applications harmoniques
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Un analogue conforme des applications harmoniques
چکیده انگلیسی

RésuméSur une surface de Riemann, l'énergie d'une application à valeurs dans une variété riemannienne est une fonctionnelle invariante conforme, ses points critiques sont les applications harmoniques. Nous proposons ici un analogue en dimension supérieure, en construisant une fonctionnelle invariante conforme pour les applications entre deux variétés riemanniennes, dont la source est de dimension n paire. Ses points critiques satisfont une EDP elliptique d'ordre n non linéaire qui est invariante conforme sur la source, on les appelle les applications C-harmoniques. Dans le cas des fonctions, on retrouve l'opérateur GJMS, dont le terme principal est une puissance n/2 du laplacien. Pour citer cet article : V. Bérard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

On a Riemannian surface, the energy of a map into a Riemannian manifold is a conformal invariant functional, and its critical points are the harmonic maps. Our main result is a generalization of this theorem when the starting manifold is even dimensional. We then build a conformal invariant functional for the maps between two Riemannian manifolds. Its critical points then called C-harmonic are the solutions of a nonlinear elliptic PDE of order n, which is conformal invariant with respect to the start manifold. For the trivial case of real or complex functions of M, we find again the GJMS operator, with a leading part power to the n/2 of the Laplacian. To cite this article: V. Bérard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Mathematique - Volume 346, Issues 17–18, September 2008, Pages 985-988