کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4671711 | 1633967 | 2011 | 5 صفحه PDF | دانلود رایگان |

This Note investigates the properties of the traveling waves solutions of the nonlocal Fisher equation. The existence of such solutions has been proved recently in Berestycki et al. (2009) [3] but their asymptotic behavior was still unclear. We use here a new numerical approximation of these traveling waves which shows that some traveling waves connect the two homogeneous steady states 0 and 1, which is a striking fact since 0 is dynamically unstable and 1 is unstable in the sense of Turing.
RésuméNous étudions dans cette Note les propriétés des solutions de type ondes progressives pour lʼéquation de Fisher non-locale. Lʼexistence de telles solutions a été prouvée récemment dans Berestycki et al. (2009) [3] mais leur comportement asymptotique était encore mal compris. Nous développons ici une nouvelle méthode dʼapproximation numérique montrant que certaines ondes progressives connectent les deux états dʼéquilibre homogènes 0 et 1, ce qui est surprenant puisque 0 est dynamiquement instable et 1 est instable au sens de Turing.
Journal: Comptes Rendus Mathematique - Volume 349, Issues 9–10, May 2011, Pages 553-557