کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4671937 1633974 2010 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Kahane theorem for nonspherical partial sums of Fourier integrals
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The Kahane theorem for nonspherical partial sums of Fourier integrals
چکیده انگلیسی

When n>2 it is well known that the spherical partial sums of n-fold Fourier integrals of the characteristic function of a ball diverge at the origin, because of the jump at the boundary of the ball. The relation between convergence properties of spherical partial sums and geometry of discontinuities of the function being expanded was investigated in the well-known paper of Kahane. The most remarkable result, proved by Kahane in this paper, asserts that for the characteristic function of a bounded domain in R3 the inverse statement is also true: if the surface is analytic and if the spherical Fourier inversion fails at a single point, then the surface must be a sphere and the point must be the center. In this Note we consider nonspherical partial sums, i.e. Fourier integrals under summation over smoothly bounded strongly convex symmetric sets and prove the natural generalization of the Kahane theorem.

RésuméPour n>2 on sait que les sommes partielles sphériques des intégrales n-ièmes de la fonction caractéristique d'une boule divergent à l'origine ; cela résulte du saut de cette fonction à la frontière de la boule. La relation entre les propriétés de convergence des sommes partielles sphériques et la géométrie des discontinuités de la fonction considérée a été étudiée en détail dans un article bien connu de Kahane : le résultat le plus intéressant démontré par Kahane est que pour la fonction caractéristique d'un domaine borné de R3 la proposition réciproque est également vraie, à savoir que si la surface est analytique et si l'inverse de Fourier est réduite à un point, alors la surface doit être une sphère et le point est le centre de cette sphère. Dans cette Note on considère des sommes partielles non sphériques, c'est-à-dire des intégrales de Fourier sur des ensembles symétriques, fortement convexes bornés à frontières régulières ; on démontre ainsi une généralisation naturelle du théorème de Kahane.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Mathematique - Volume 348, Issues 19–20, October 2010, Pages 1103-1106