کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4673007 1346605 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polynomial maps with invertible sums of Jacobian matrices and directional derivatives
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Polynomial maps with invertible sums of Jacobian matrices and directional derivatives
چکیده انگلیسی

Let F:Cn→CmF:Cn→Cm be a polynomial map with degF=d≥2degF=d≥2. We prove that FF is invertible if m=nm=n and ∑i=1d−1(JF)|αi is invertible for all αi∈Cnαi∈Cn, which is trivially the case for invertible quadratic maps.More generally, we prove that for affine lines L={β+μγ∣μ∈C}⊆CnL={β+μγ∣μ∈C}⊆Cn (γ≠0γ≠0), F∣LF∣L is linearly rectifiable, if and only if ∑i=1d−1(JF)|αi⋅γ≠0 for all αi∈Lαi∈L. This appears to be the case for all affine lines LL when FF is injective and d≤3d≤3.We also prove that if m=nm=n and ∑i=1n(JF)|αi is invertible for all αi∈Cnαi∈Cn, then FF is a composition of an invertible linear map and an invertible polynomial map X+HX+H with linear part XX, such that the subspace generated by {(JH)|α∣α∈Cn}{(JH)|α∣α∈Cn} consists of nilpotent matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Indagationes Mathematicae - Volume 23, Issue 3, September 2012, Pages 256–268
نویسندگان
, , , ,