کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4673063 | 1346607 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On gaps between quadratic non-residues in the Euclidean and Hamming metrics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The authors have recently introduced and studied a modification of the classical number theoretic question about the largest gap between consecutive quadratic non-residues and primitive roots modulo a prime pp, where the distances are measured in the Hamming metric on binary representations of integers. Here we continue to study the distribution of such gaps. In particular we prove the upper bound ℓp≤(0.117198…+o(1))logp/log2ℓp≤(0.117198…+o(1))logp/log2 for the smallest Hamming weight ℓpℓp among prime quadratic non-residues modulo a sufficiently large prime pp. The Burgess bound on the least quadratic non-residue only gives ℓp≤(0.15163…+o(1))logp/log2ℓp≤(0.15163…+o(1))logp/log2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Indagationes Mathematicae - Volume 24, Issue 4, 15 November 2013, Pages 930–938
Journal: Indagationes Mathematicae - Volume 24, Issue 4, 15 November 2013, Pages 930–938
نویسندگان
Rainer Dietmann, Christian Elsholtz, Igor E. Shparlinski,