کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
467320 697939 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust regression for high throughput drug screening
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Robust regression for high throughput drug screening
چکیده انگلیسی

Effective analysis of high throughput screening (HTS) data requires automation of dose–response curve fitting for large numbers of datasets. Datasets with outliers are not handled well by standard non-linear least squares methods, and manual outlier removal after visual inspection is tedious and potentially biased. We propose robust non-linear regression via M-estimation as a statistical technique for automated implementation. The approach of finding M-estimates by Iteratively Reweighted Least Squares (IRLS) and the resulting optimization problem are described. Initial parameter estimates for iterative methods are important, so self-starting methods for our model are presented. We outline the software implementation, done in Matlab and deployed as an Excel application via the Matlab Excel Builder Toolkit. Results of M-estimation are compared with least squares estimates before and after manual editing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 82, Issue 1, April 2006, Pages 31–37
نویسندگان
, , ,