کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4673226 1346618 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finitary isomorphism of some renewal processes to Bernoulli schemes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Finitary isomorphism of some renewal processes to Bernoulli schemes
چکیده انگلیسی

Using the marker and filler methods of Keane and Smorodinsky, we prove that entropy is a complete finitary isomorphism invariant for r-processes. It is conjectured that entropy is a complete finitary isomorphism invariant for finitary factors of Bernoulli schemes. We present a weaker version of this conjecture with hope that its proof is more attainable with present methods. In doing so, we define a one-way finitary isomorphism and prove one-way finitary results for random walks. We will also extend the marker and filler methods of Keane and Smorodinsky to a class of countable state processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Indagationes Mathematicae - Volume 20, Issue 3, September 2009, Pages 463-476