کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
470145 | 698402 | 2009 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automated classification of duodenal imagery in celiac disease using evolved Fourier feature vectors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Feature extraction techniques based on selection of highly discriminant Fourier filters have been developed for an automated classification of magnifying endoscope images with respect to pit patterns of colon lesions. These are applied to duodenal imagery for diagnosis of celiac disease. Features are extracted from the Fourier domain by selecting the most discriminant features using an evolutionary algorithm. Subsequent classification is performed with various standard algorithms (KNN, SVM, Bayes classifier) and combination of several Fourier filters and classifiers which is called multiclassifier. The obtained results are promising, due to a high specificity for the detection of mucosal damage typical of untreated celiac disease.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 95, Issue 2, Supplement, August 2009, Pages S68–S78
Journal: Computer Methods and Programs in Biomedicine - Volume 95, Issue 2, Supplement, August 2009, Pages S68–S78
نویسندگان
Andreas Vécsei, Thomas Fuhrmann, Michael Liedlgruber, Leonhard Brunauer, Hannes Payer, Andreas Uhl,