کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
470145 698402 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated classification of duodenal imagery in celiac disease using evolved Fourier feature vectors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Automated classification of duodenal imagery in celiac disease using evolved Fourier feature vectors
چکیده انگلیسی

Feature extraction techniques based on selection of highly discriminant Fourier filters have been developed for an automated classification of magnifying endoscope images with respect to pit patterns of colon lesions. These are applied to duodenal imagery for diagnosis of celiac disease. Features are extracted from the Fourier domain by selecting the most discriminant features using an evolutionary algorithm. Subsequent classification is performed with various standard algorithms (KNN, SVM, Bayes classifier) and combination of several Fourier filters and classifiers which is called multiclassifier. The obtained results are promising, due to a high specificity for the detection of mucosal damage typical of untreated celiac disease.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 95, Issue 2, Supplement, August 2009, Pages S68–S78
نویسندگان
, , , , , ,