کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
473374 698787 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression
چکیده انگلیسی

A branch and bound strategy is proposed for solving the clusterwise regression problem, extending Brusco's repetitive branch and bound algorithm (RBBA). The resulting strategy relies upon iterative heuristic optimization, new ways of observation sequencing, and branch and bound optimization of a limited number of ending subsets. These three key features lead to significantly faster optimization of the complete set and the strategy has more general applications than only for clusterwise regression. Additionally, an efficient implementation of incremental calculations within the branch and bound search algorithm eliminates most of the redundant ones. Experiments using both real and synthetic data compare the various features of the proposed optimization algorithm and contrasts them against a benchmark mixed logical-quadratic programming formulation optimized by CPLEX. The results indicate that all components of the proposed algorithm provide significant improvements in processing times, and, when combined, generally provide the best performance, significantly outperforming CPLEX.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 39, Issue 11, November 2012, Pages 2748–2762
نویسندگان
, , ,