کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
474078 698840 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scale-invariant clustering with minimum volume ellipsoids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Scale-invariant clustering with minimum volume ellipsoids
چکیده انگلیسی

This paper develops theory and algorithms concerning a new metric for clustering data. The metric minimizes the total volume of clusters, where the volume of a cluster is defined as the volume of the minimum volume ellipsoid (MVE) enclosing all data points in the cluster. This metric is scale-invariant, that is, the optimal clusters are invariant under an affine transformation of the data space. We introduce the concept of outliers in the new metric and show that the proposed method of treating outliers asymptotically recovers the data distribution when the data comes from a single multivariate Gaussian distribution. Two heuristic algorithms are presented that attempt to optimize the new metric. On a series of empirical studies with Gaussian distributed simulated data, we show that volume-based clustering outperforms well-known clustering methods such as k-means, Ward's method, SOM, and model-based clustering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 35, Issue 4, April 2008, Pages 1017–1029
نویسندگان
, ,