کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4764204 | 1423383 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multivariate time delay analysis based local KPCA fault prognosis approach for nonlinear processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for incipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivariate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a simple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has superiority in the fault prognosis sensitivity over other traditional fault prognosis methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 24, Issue 10, October 2016, Pages 1413-1422
Journal: Chinese Journal of Chemical Engineering - Volume 24, Issue 10, October 2016, Pages 1413-1422
نویسندگان
Yuan Xu, Ying Liu, Qunxiong Zhu,