کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
476532 | 699859 | 2011 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using incremental general regression neural network for learning mixture models from incomplete data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Finite mixture models (FMM) is a well-known pattern recognition method, in which parameters are commonly determined from complete data using the Expectation Maximization (EM) algorithm. In this paper, a new algorithm is proposed to determine FMM parameters from incomplete data. Compared with a modified EM algorithm that is proposed earlier the proposed algorithm has better performance than the modified EM algorithm when the dimensions containing missing values are at least moderately correlated with some of the complete dimensions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Egyptian Informatics Journal - Volume 12, Issue 3, November 2011, Pages 185–196
Journal: Egyptian Informatics Journal - Volume 12, Issue 3, November 2011, Pages 185–196
نویسندگان
Ahmed R. Abas,