کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4765479 1423859 2016 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
چکیده انگلیسی

The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data in Brief - Volume 9, December 2016, Pages 13-16
نویسندگان
, , ,