کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
477076 1446101 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Globally optimal clusterwise regression by mixed logical-quadratic programming
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Globally optimal clusterwise regression by mixed logical-quadratic programming
چکیده انگلیسی

Exact global optimization of the clusterwise regression problem is challenging and there are currently no published feasible methods for performing this clustering optimally, even though it has been over thirty years since its original proposal. This work explores global optimization of the clusterwise regression problem using mathematical programming and related issues. A mixed logical-quadratic programming formulation with implication of constraints is presented and contrasted against a quadratic formulation based on the traditional big-M, which cannot guarantee optimality because the regression line coefficients, and thus errors, may be arbitrarily large. Clusterwise regression optimization times and solution optimality for two clusters are empirically tested on twenty real datasets and three series of synthetic datasets ranging from twenty to one hundred observations and from two to ten independent variables. Additionally, a few small real datasets are clustered into three lines.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 212, Issue 1, 1 July 2011, Pages 213–222
نویسندگان
, , ,