کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
478054 1446006 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering financial time series: New insights from an extended hidden Markov model
ترجمه فارسی عنوان
مجموعه ای از سری زمانی مالی: بینش های جدید از یک مدل پنهان مارکف پنهان
کلمات کلیدی
داده کاوی، مدل مخفی مارکف، شاخص های سهام، مدل کلاس خاموش مدل سوئیچینگ رژیم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


• A model-based clustering technique is used in mining financial time series data.
• The model allows unobserved heterogeneity between and within time series.
• In the analysis of stock markets, the best model has two groups and three regimes.
• The model performs well in capturing different regime dynamics of stock markets.

In recent years, large amounts of financial data have become available for analysis. We propose exploring returns from 21 European stock markets by model-based clustering of regime switching models. These econometric models identify clusters of time series with similar dynamic patterns and moreover allow relaxing assumptions of existing approaches, such as the assumption of conditional Gaussian returns. The proposed model handles simultaneously the heterogeneity across stock markets and over time, i.e., time-constant and time-varying discrete latent variables capture unobserved heterogeneity between and within stock markets, respectively. The results show a clear distinction between two groups of stock markets, each one characterized by different regime switching dynamics that correspond to different expected return-risk patterns. We identify three regimes: the so-called bull and bear regimes, as well as a stable regime with returns close to 0, which turns out to be the most frequently occurring regime. This is consistent with stylized facts in financial econometrics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 243, Issue 3, 16 June 2015, Pages 852–864
نویسندگان
, , ,