کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
480350 | 1446102 | 2011 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finding optimal memoryless policies of POMDPs under the expected average reward criterion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, partially observable Markov decision processes (POMDPs) with discrete state and action space under the average reward criterion are considered from a recent-developed sensitivity point of view. By analyzing the average-reward performance difference formula, we propose a policy iteration algorithm with step sizes to obtain an optimal or local optimal memoryless policy. This algorithm improves the policy along the same direction as the policy iteration does and suitable step sizes guarantee the convergence of the algorithm. Moreover, the algorithm can be used in Markov decision processes (MDPs) with correlated actions. Two numerical examples are provided to illustrate the applicability of the algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 211, Issue 3, 16 June 2011, Pages 556–567
Journal: European Journal of Operational Research - Volume 211, Issue 3, 16 June 2011, Pages 556–567
نویسندگان
Yanjie Li, Baoqun Yin, Hongsheng Xi,