کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
482468 | 1446214 | 2006 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TASC: Two-attribute-set clustering through decision tree construction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Clustering is the process of grouping a set of objects into classes of similar objects. In the past, clustering algorithms had a common problem that they use only one set of attributes for both partitioning the data space and measuring the similarity between objects. This problem has limited the use of the existing algorithms on some practical situation. Hence, this paper introduces a new clustering algorithm, which partitions data space by constructing a decision tree using one attribute set, and measures the degree of similarity using another. Three different partitioning methods are presented. The algorithm is explained with illustration. The performance and accuracy of the four partitioning methods are evaluated and compared.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 174, Issue 2, 16 October 2006, Pages 930–944
Journal: European Journal of Operational Research - Volume 174, Issue 2, 16 October 2006, Pages 930–944
نویسندگان
Yen-Liang Chen, Wu-Hsien Hsu, Yu-Hsuan Lee,