کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
482842 | 1446233 | 2006 | 17 صفحه PDF | دانلود رایگان |

This paper deals with knowledge acquisition in incomplete information systems using rough set theory. The concept of similarity classes in incomplete information systems is first proposed. Two kinds of partitions, lower and upper approximations, are then formed for the mining of certain and association rules in incomplete decision tables. One type of “optimal certain” and two types of “optimal association” decision rules are generated. Two new quantitative measures, “random certainty factor” and “random coverage factor”, associated with each decision rule are further proposed to explain relationships between the condition and decision parts of a rule in incomplete decision tables. The reduction of descriptors and induction of optimal rules in such tables are also examined.
Journal: European Journal of Operational Research - Volume 168, Issue 1, 1 January 2006, Pages 164–180