کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
483043 1446194 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved customer choice predictions using ensemble methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Improved customer choice predictions using ensemble methods
چکیده انگلیسی

In this paper various ensemble learning methods from machine learning and statistics are considered and applied to the customer choice modeling problem. The application of ensemble learning usually improves the prediction quality of flexible models like decision trees and thus leads to improved predictions. We give experimental results for two real-life marketing datasets using decision trees, ensemble versions of decision trees and the logistic regression model, which is a standard approach for this problem. The ensemble models are found to improve upon individual decision trees and outperform logistic regression.Next, an additive decomposition of the prediction error of a model is considered known as the bias/variance decomposition. A model with a high bias lacks the flexibility to fit the data well. A high variance indicates that a model is instable with respect to different datasets. Decision trees have a high variance component and a low bias component in the prediction error, whereas logistic regression has a high bias component and a low variance component. It is shown that ensemble methods aim at minimizing the variance component in the prediction error while leaving the bias component unaltered. Bias/variance decompositions for all models for both customer choice datasets are given to illustrate these concepts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 181, Issue 1, 16 August 2007, Pages 436–452
نویسندگان
, ,