کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
483242 | 1446204 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The k-means range algorithm for personalized data clustering in e-commerce
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper describes the k-means range algorithm, a combination of the partitional k-means clustering algorithm with a well known spatial data structure, namely the range tree, which allows fast range searches. It offers a real-time solution for the development of distributed interactive decision aids in e-commerce since it allows the consumer to model his preferences along multiple dimensions, search for product information, and then produce the data clusters of the products retrieved to enhance his purchase decisions. This paper also discusses the implications and advantages of this approach in the development of on-line shopping environments and consumer decision aids in traditional and mobile e-commerce applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 177, Issue 3, 16 March 2007, Pages 1400–1408
Journal: European Journal of Operational Research - Volume 177, Issue 3, 16 March 2007, Pages 1400–1408
نویسندگان
Georgios P. Papamichail, Dimitrios P. Papamichail,