کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
483731 701802 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Introduction to some conjectures for spectral minimal partitions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Introduction to some conjectures for spectral minimal partitions
چکیده انگلیسی

Given a bounded open set Ω   in RnRn (or in a Riemannian manifold) and a partition of Ω by k open sets Dj, we consider the quantity maxjλ(Dj) where λ(Dj) is the ground state energy of the Dirichlet realization of the Laplacian in Dj. If we denote by Lk(Ω)Lk(Ω) the infimum over all the k-partitions of maxjλ(Dj), a minimal k-partition is then a partition which realizes the infimum. When k = 2, we find the two nodal domains of a second eigenfunction, but the analysis of higher k’s is non trivial and quite interesting. In this paper, which is complementary of the survey [20], we consider the two-dimensional case and present the properties of minimal spectral partitions, illustrate the difficulties by considering simple cases like the disk, the rectangle or the sphere (k = 3). We will present also the main conjectures in this rather new subject.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Egyptian Mathematical Society - Volume 19, Issues 1–2, April–July 2011, Pages 45–51
نویسندگان
,