کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
484018 | 703126 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Identification of VoIP encrypted traffic using a machine learning approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate the performance of three different machine learning algorithms, namely C5.0, AdaBoost and Genetic programming (GP), to generate robust classifiers for identifying VoIP encrypted traffic. To this end, a novel approach (Alshammari and Zincir-Heywood, 2011) based on machine learning is employed to generate robust signatures for classifying VoIP encrypted traffic. We apply statistical calculation on network flows to extract a feature set without including payload information, and information based on the source and destination of ports number and IP addresses. Our results show that finding and employing the most suitable sampling and machine learning technique can improve the performance of classifying VoIP significantly.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of King Saud University - Computer and Information Sciences - Volume 27, Issue 1, January 2015, Pages 77–92
Journal: Journal of King Saud University - Computer and Information Sciences - Volume 27, Issue 1, January 2015, Pages 77–92
نویسندگان
Riyad Alshammari, A. Nur Zincir-Heywood,