کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
484180 703257 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance Analysis of Various Fuzzy Clustering Algorithms: A Review
ترجمه فارسی عنوان
تجزیه و تحلیل عملکرد الگوریتم های خوشه بندی فازی مختلف: یک بررسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Fuzzy clustering is useful clustering technique which partitions the data set in fuzzy partitions and this technique is applicable in many technical applications like crime hot spot detection, tissue differentiation in medical images, software quality prediction etc. In this review paper, we have done a comprehensive study and experimental analysis of the performance of all major fuzzy clustering algorithms named: FCM, PCM, PFCM, FCM-σ, T2FCM, KT2FCM, IFCM, KIFCM, IFCM-σ, KIFCM-σ, NC, CFCM, DOFCM. To better analysis their performance we experimented with standard data points in the presents of noise and outlier. This paper will act as a catalyst in the initial study for all those researchers who directly or indirectly deal with fuzzy clustering in their research work and ease them to pick a specific method as per the suitability to their working environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 79, 2016, Pages 100-111