کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
484302 | 703260 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Electromyography (EMG) based Classification of Neuromuscular Disorders using Multi-Layer Perceptron
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Electromyography (EMG) signals are the measure of activity in the muscles. The aim of this study is to identify the neuromuscular disease based on EMG signals by means of classification. The neuromuscular diseases that have been identified are myopathy and neuropathy. The classification was carried out using Artificial Neural Network (ANN). There are five feature extraction techniques that were used to extract the signals such as Autoregressive (AR), Root Mean Square (RMS), Zero Crossing (ZC), Waveform length (WL) and Mean Absolute Value (MAV). A comparative analysis of these different techniques were carried out based on the results. The Multilayer Perceptron (MLP) was used for carrying out the classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 76, 2015, Pages 223-228
Journal: Procedia Computer Science - Volume 76, 2015, Pages 223-228