کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
484597 703280 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
COPPER - Constraint OPtimized Prefixspan for Epidemiological Research
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
COPPER - Constraint OPtimized Prefixspan for Epidemiological Research
چکیده انگلیسی

Sequential pattern mining, is a data mining technique used to study the temporal evolution of events describing a complex phe- nomenon. This technique has a limited application due to the high number of common sequences generated by dense datasets. To tackle this problem, we propose COP, an extension of the PrefixSpan algorithm oriented towards optimizing the relevance of the results obtained in the sequential patterns mining process. Indeed, we use multiple and simultaneous constraints that represent the expertise of researchers in a specific domain. Experiments conducted on datasets associated to dengue epidemic monitoring show an improve in result relevance from an expert's point of view, as well as, a considerable speed gains for mining dense datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 63, 2015, Pages 433-438