کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
484828 703295 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evolving Gustafson-kessel Possibilistic c-Means Clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Evolving Gustafson-kessel Possibilistic c-Means Clustering
چکیده انگلیسی

This paper presents an idea of evolving Gustafson-Kessel possibilistic c-means clustering (eGKPCM). This approach is extension of well known possiblilistic c-means clustering (PCM) which was proposed to address the drawbacks associated with the constrained membership functions used in fuzzy c-means algorithms (FCM). The idea of possiblistic clustering is ap- pealing when the data samples are highly noisy. The extension to Gustafson-Kessel possibilistic clustering enables us to deal with the clusters of different shapes and the evolving structure enables us to cope with the data structures which vary during the time. The evolving nature of the algorithm makes it also appropriate for dealing with big-data problems. The proposed approach is shown on a simple classification problem of unlabelled data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 53, 2015, Pages 191-198