کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
484851 703295 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generic Object Recognition with Local Receptive Fields Based Extreme Learning Machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Generic Object Recognition with Local Receptive Fields Based Extreme Learning Machine
چکیده انگلیسی

Generic object recognition is to classify the object to a generic category. Intra-class variabilities cause big troubles for this task. Traditional methods involve plenty of pre-processing steps, like model construction, feature extraction, etc. Moreover, these methods are only effective for some specific dataset. In this paper, we propose to use local receptive fields based extreme learning machine (ELM-LRF) as a general framework for object recognition. It is operated directly on the raw images and thus suitable for all different datasets. Additionally, the architecture is simple and only requires few computations, as most connection weights are randomly generated. Comparing to state-of-the-art results on NORB, ETH-80 and COIL datasets, it is on par with the best one on ETH-80 and sets the new records for NORB and COIL.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 53, 2015, Pages 391-399