کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
484868 703300 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of ECG Signal during Atrial Fibrillation Using Autoregressive Modeling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Classification of ECG Signal during Atrial Fibrillation Using Autoregressive Modeling
چکیده انگلیسی

Atrial fibrillation (AF) is a common type of arrhythmia that causes death in the adults .The Auto regressive (AR) coefficients characterize the features of AF. The AR coefficients are measured for every 15 second duration of the ECG and the features are extracted using Burg's method. These features are classified using the different statistical classifiers such as kernel Support Vector Machine (KSVM) and K- Nearest Neighbor (KNN). The performance of these classifiers is evaluated on signals obtained from MIT-BIH Atrial Fibrillation Database.The effect of AR model order and data length is tested on the classification results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 46, 2015, Pages 53-59