کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485124 703313 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Demand Forecasting based on Pairwise Item Associations
ترجمه فارسی عنوان
پیش بینی تقاضا براساس بخشهای مربوط به پاراگراف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Forecasting is an essential task conducted regularly by competitive retailers around the world. Most retail decisions are made based on the demand forecasts which may or may not be accurate in the first place. In this study, a framework for forecasting weekly demands of retail items is proposed via linear regression models within item groups that incorporate both positive and negative item associations. In addition to pairwise item associations found by utilizing transactional data, our framework incorporates item similarities based on weekly sales figures to group the similar items. Grouping items can be regarded as a form of variable selection to prevent the overfitting in the prediction models. The regression results of the framework and benchmark linear regression models are reported for a real world dataset provided by an apparel retailer. The results show that the regression models provide better estimates within multi-item groups compared to the single item models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 36, 2014, Pages 261-268