کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485179 703313 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting Solar Irradiance Using Time Series Neural Networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Predicting Solar Irradiance Using Time Series Neural Networks
چکیده انگلیسی

Increasing the accuracy of prediction improves the performance of photovoltaic systems and alleviates the effects of intermittence on the systems stability. A Nonlinear Autoregressive Network with Exogenous Inputs (NARX) approach was applied to the Vichy-Rolla National Airport's photovoltaic station. The proposed model uses several inputs (e.g. time, day of the year, sky cover, pressure, and wind speed) to predict hourly solar irradiance. Data obtained from the National Solar Radiation Database (NSRDB) was used to conduct simulation experiments. These simulations validate the use of the proposed model for short-term predictions. Results show that the NARX neural network notably outperformed the other models and is better than the linear regression model. The use of additional meteorological variables, particularly sky cover, can further improve the prediction performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 36, 2014, Pages 623-628