کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485305 703324 2013 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bias Reduction of Probabilistic Prototype Tree based Estimation of Distribution Genetic Programming in Predicting Arthritis Prevalence
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Bias Reduction of Probabilistic Prototype Tree based Estimation of Distribution Genetic Programming in Predicting Arthritis Prevalence
چکیده انگلیسی

Estimation of Distribution Algorithms in Genetic Programming (EDA-GP) are algorithms applying stochastic model learning to genetic programming. In spite of various potential benefits, probabilistic prototype tree (PPT) based EDA-GPs recently appeared to have a critical problem of losing diversity easily. As an alternative learning method to reduce the effect, likelihood weighting (LW) was proposed and its results were positive to improve EDA-GP performance. In this paper, we aim to provide more generalised verification results to confirm the effects of LW. We investigate performance of PPT-based EDA-GP in a large scale problem predicting arthritis using medical data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 24, 2013, Pages 121-125