کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
485305 | 703324 | 2013 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bias Reduction of Probabilistic Prototype Tree based Estimation of Distribution Genetic Programming in Predicting Arthritis Prevalence
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Estimation of Distribution Algorithms in Genetic Programming (EDA-GP) are algorithms applying stochastic model learning to genetic programming. In spite of various potential benefits, probabilistic prototype tree (PPT) based EDA-GPs recently appeared to have a critical problem of losing diversity easily. As an alternative learning method to reduce the effect, likelihood weighting (LW) was proposed and its results were positive to improve EDA-GP performance. In this paper, we aim to provide more generalised verification results to confirm the effects of LW. We investigate performance of PPT-based EDA-GP in a large scale problem predicting arthritis using medical data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 24, 2013, Pages 121-125
Journal: Procedia Computer Science - Volume 24, 2013, Pages 121-125