کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
485529 | 703330 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unsupervised Mining of Activities for Smart Home Prediction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper addresses the problem of learning the Activities of Daily Living (ADLs) in smart home for cognitive assistance to an occupant suffering from some type of dementia, such as Alzheimer's disease. We present an extension of the Flocking algorithm for ADL clustering analysis. The Flocking based algorithm does not require an initial number of clusters, unlike other partition algorithms such as K-means. This approach allows us to learn ADL models automatically (without human supervision) to carry out activity recognition. By simulating a set of real case scenarios, an implementation of this model was tested in our smart home laboratory, the LIARA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 19, 2013, Pages 503-510
Journal: Procedia Computer Science - Volume 19, 2013, Pages 503-510