کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485569 703332 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Emotion Detection Using MFCC and Cepstrum Features
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Emotion Detection Using MFCC and Cepstrum Features
چکیده انگلیسی

A tremendous research is being done on Speech Emotion Recognition (SER) in the recent years with its main motto to improve human machine interaction. In this work, the effect of cepstral coefficients in the detection of emotions is performed. Also, a comparative analysis of cepstum, Mel-frequency Cepstral Coefficients (MFCC) and synthetically enlarged MFCC coefficients on emotion classification is done. Using a compact feature vector, our algorithm depicted better recognition rates of identifying seven emotions from Berlin speech corpus compared to the earlier work by Firoz Shah where only four emotions were recognized with good accuracy. The proposed method has facilitated a considerable reduction in the misclassification efficiency which outperforms the algorithm by InmaMohino, where the feature vector included only synthetically enlarged MFCC coefficients.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 70, 2015, Pages 29-35