کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485595 703332 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
K-Medoid Clustering for Heterogeneous DataSets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
K-Medoid Clustering for Heterogeneous DataSets
چکیده انگلیسی

Recent years have explored various clustering strategies to partition datasets comprising of heterogeneous domains or types such as categorical, numerical and binary. Clustering algorithms seek to identify homogeneous groups of objects based on the values of their attributes. These algorithms either assume the attributes to be of homogeneous types or are converted into homogeneous types. However, datasets with heterogeneous data types are common in real life applications, which if converted, can lead to loss of information. This paper proposes a new similarity measure in the form of triplet to find the distance between two data objects with heterogeneous attribute types. A new k-medoid type of clustering algorithm is proposed by leveraging the similarity measure in the form of a vector. The proposed k-medoid type of clustering algorithm is compared with traditional clustering algorithms, based on cluster validation using Purity Index and Davies Bouldin index. Results show that the new clustering algorithm with new similarity measure outperforms the k-means clustering for mixed datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 70, 2015, Pages 226-237