کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
485904 703344 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance Tuning of MapReduce Jobs Using Surrogate-based Modeling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Performance Tuning of MapReduce Jobs Using Surrogate-based Modeling
چکیده انگلیسی

Modeling workflow performance is crucial for finding optimal configuration parameters and optimizing execution times. We apply the method of surrogate-based modeling to performance tuning of MapReduce jobs. We build a surrogate model defined by a multivariate polynomial containing a variable for each parameter to be tuned. For illustrative purposes, we focus on just two parameters: the number of parallel mappers and the number of parallel reducers. We demonstrate that an accurate performance model can be built sampling a small set of the parameter space. We compare the accuracy and cost of building the model when using different sampling methods as well as when using different modeling approaches. We conclude that the surrogate-based approach we describe is both less expensive in terms of sampling time and more accurate than other well-known tuning methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 51, 2015, Pages 49-59