کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
486452 703373 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving Lap-TSVM with Successive Overrelaxation and Differential Evolution
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Improving Lap-TSVM with Successive Overrelaxation and Differential Evolution
چکیده انگلیسی

Recent proposed laplacian twin support vector machine (Lap-TSVM) gains good generation by solving a pair of quadratic programming problems (QPPs). However, the training procedure of Lap-TSVM is time-consuming. More- over, compared with SVM and TWSVM, Lap-TSVM has more parameters need to regulate, which affects its practical applications. In this paper, we improve the Lap-TSVM from the following two aspects: (1) By introducing the suc- cessive overrelaxation (SOR) technique, the QPPs of Lap-TSVM are solved with fast training speed without loss of generalization. (2) A differential evolution (DE)-based model for Lap-TSVM's parameters selection is further sug- gested. Our DE-based model uses the real-value encoding instead of binary numbers, which enhances the efficiency of parameters selection greatly. Computational results on several benchmark datasets confirm the merits of the greatly improvements on the training procedure of Lap-TSVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 17, 2013, Pages 33-40