کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
486522 | 703373 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Investigation of Neural Networks for Function Approximation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work, some ubiquitous neural networks are applied to model the landscape of a known problem function approximation. The performance of the various neural networks is analyzed and validated via some well-known benchmark problems as target functions, such as Sphere, Rastrigin, and Griewank functions. The experimental results show that among the three neural networks tested, Radial Basis Function (RBF) neural network is superior in terms of speed and accuracy for function approximation in comparison with Back Propagation (BP) and Generalized Regression Neural Network (GRNN).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 17, 2013, Pages 586-594
Journal: Procedia Computer Science - Volume 17, 2013, Pages 586-594