کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
487102 703548 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine
چکیده انگلیسی

Batik is a traditional fabric of Indonesian cultural heritage. Automatic batik image classification is required to preserve the wealth of traditional art of Indonesia. In such classification, a method to extract unique characteristics of batik image is important. Combination of Bag of Features (BOF) extracted using Scale-Invariant Feature Transform (SIFT) and Support Vector Machine (SVM) classifier which had been successfully implemented in various classification tasks such as hand gesture, natural images, vehicle images, is applied to batik image classification in this study. The experimental results show that average accuracy of this method reaches 97.67%, 95.47% and 79% in normal image, rotated image and scaled image, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 72, 2015, Pages 24-30