کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
487462 | 703573 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Feature Selection and Classification of Microarray Data using MapReduce based ANOVA and K-Nearest Neighbor
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The major drawback of microarray data is the ‘curse of dimensionality problem’, this hinders the useful information of dataset and leads to computational instability. Therefore, selecting relevant genes is an imperative in microarray data analysis. Most of the existing schemes employ a two-phase processes: feature selection/extraction followed by classification. In this paper, a statistical test, ANOVA based on MapReduce is proposed to select the relevant features. After feature selection, MapReduce based K-Nearest Neighbor (K-NN) classifier is also proposed to classify the microarray data. These algorithms are successfully implemented on Hadoop framework and comparative analysis is done using various datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 54, 2015, Pages 301-310
Journal: Procedia Computer Science - Volume 54, 2015, Pages 301-310