کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
487974 703676 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-objective Evolutionary Algorithm with Strong Convergence of Multi-area for Assembly Line Balancing Problem with Worker Capability
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Multi-objective Evolutionary Algorithm with Strong Convergence of Multi-area for Assembly Line Balancing Problem with Worker Capability
چکیده انگلیسی

Multiobjective assembly line balancing with worker capability (moALB-wc) is a realistic and important issue from classical assembly line balancing (ALB) problem involving conflicting criteria such as the cycle time, the total worker cost, and/or the variation of workload. This paper proposes a multiobjective evolutionary algorithm (MOEA) with strong convergence of multi- area (MOEA-SCM) to deal with moALB-wc problem considering minimization of the cycle time and total worker cost, given a fixed number of station limit. It adopts special fitness function strategy considering dominating and dominated relationship among individuals and hybrid selection mechanism so as to the individuals could converging toward the multiple areas of Pareto front. Such ability to strong convergence of multi-area could preserve both the convergence and even distribution performance of proposed algorithm. Numerical comparisons with various problem instances show that MOEA-SCM could get the better convergence distribution performance than existing MOEAs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 20, 2013, Pages 83-89