کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488148 703692 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GX-Means: A model-based divide and merge algorithm for geospatial image clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
GX-Means: A model-based divide and merge algorithm for geospatial image clustering
چکیده انگلیسی

One of the practical issues in clustering is the specification of the appropriate number of clusters, which is not obvious when analyzing geospatial datasets, partly because they are huge (both in size and spatial extent) and high dimensional. In this paper we present a computationally effcient model-based split and merge clustering algorithm that incrementally finds model parameters and the number of clusters. Additionally, we attempt to provide insights into this problem and other data mining challenges that are encountered when clustering geospatial data. The basic algorithm we present is similar to the G-means and X-means algorithms; however, our proposed approach avoids certain limitations of these well-known clustering algorithms that are pertinent when dealing with geospatial data. We compare the performance of our approach with the G-means and X-means algorithms. Experimental evaluation on simulated data and on multispectral and hyperspectral remotely sensed image data demonstrates the effectiveness of our algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 4, 2011, Pages 186-195