کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488162 703692 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Can models of scientific software-hardware interactions be predictive?
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Can models of scientific software-hardware interactions be predictive?
چکیده انگلیسی

Sparse scientific codes face grave performance challenges as memory bandwidth limitations grow on multi-core architectures. We investigate the memory behavior of a key sparse scientific kernel and study model-driven performance evaluation in this scope. We propose the Coupled Reuse-Cache Model (CRC Model), to enable multilevel cache performance analysis of parallel sparse codes. Our approach builds separate probabilistic application and hardware models, which are coupled to discover unprecedented insight into software-hardware interactions in the cache hierarchy. We evaluate our model's predictive performance with the pervasive sparse matrix-vector product kernel, using 1 to 16 cores and multiple cache configurations. For multi-core setups, average L1 and L2 prediction errors are within 3% and 6% respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 4, 2011, Pages 322-331