کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488268 703727 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Majority voting based classification of thyroid carcinoma
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Majority voting based classification of thyroid carcinoma
چکیده انگلیسی

This paper presents the classification of Papillary carcinoma and Medullary carcinoma cells in Fine Needle Aspiration Biopsy (FNAB) microscopic cytological images of thyroid nodules under varying staining conditions. Initially image segmentation is performed to remove the background staining information in microscopic images using mathematical morphology. Feature extraction is carried out by Discrete Wavelet Transform (DWT) and Gray Level Co-occurrence Matrix (GLCM) and the classification is done using k-Nearest Neighbor (kNN) classifier. The DWT reports the maximum diagnostic accuracy of 97.5% while GLCM reports the diagnostic accuracy of 75.84%. However the diagnostic accuracy of GLCM has been improved as 90% by implementing the majority voting rule.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 2, 2010, Pages 265-271