کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
488368 703888 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning
ترجمه فارسی عنوان
تشخیص فاجعه زمین شناسی در تصاویر سنجش از دور با استفاده از آموزش عمیق
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Geological disaster recognition, especially, landslide recognition, is of vital importance in disaster prevention, disaster monitoring and other applications. As more and more optical remote sensing images are available in recent years, landslide recognition on optical remote sensing images is in demand. Therefore, in this paper, we propose a deep learning based landslide recognition method for optical remote sensing images. In order to capture more distinct features hidden in landslide images, a particular wavelet transformation is proposed to be used as the preprocessing method. Next, a corrupting & denoising method is proposed to enhance the robustness of the model in recognize landslide features. Then, a deep auto-encoder network with multiple hidden layers is proposed to learn the high-level features and representations of each image. A softmax classifier is used for class prediction. Experiments are conducted on the remote sensing images from Google Earth. The experimental results indicate that the proposed wavDAE method outperforms the state-of-the-art classifiers both in efficiency and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 91, 2016, Pages 566–575
نویسندگان
, ,